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Abstract- Bending analysis of arbitrarily laminated, anisotropic panels and closed cylinders using
the mixed shear deformation theory proposed by the authors is presented. A set of equilibrium,
transverse shear compatibility and boundary conditions are obtained by using the mixed variational
principle proposed by Jing and Liao (1989, Int. J. Numer. Meth. Engng 28, 2813-2827) with
displacements and transverse shear as independent variables. The zig-zag type displacement is
assumed together with piecewise parabolic transverse shear. The initial curvature effect is included
in the strain-displacement relations, stress resultants and assumed transverse shear stresses. Two
types of shell geometry, infinitely long cylindrical panels and closed cylinders of finite length, are
employed in the numerical study. The cylindrical panels considered are subjected to a transversely
sinusoidal loading, while closed cylinders are under an uniform internal pressure. Numerical results
presented here are compared with exact three-dimensional elasticity solutions. From these compari­
sons, it is found that this mixed shear deformation theory can supply reasonably good results.
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coefficients of the first quadratic form of the middle surface
elastic moduli
Young's moduli
shear moduli
total thickness of the shell
thickness of the kth layer
principle curvatures of the middle surfaces
transverse shear stress resultants corresponding to zig-zag components
length of the shell
in-plane stress resultants corresponding to zig-zag components
moment stress resultants
number of layers in the shell
in-plane stress resultants
transverse shear stress resultants
the parabolic part of shear force in the 0: direction
mean radius of cylindrical shell
mean radius of the kth layer
amplitudes of zig-zag in-plane dispacements
compliances for transverse shear
prescribed tractions on the top and bottom surfaces
the values of transverse shear in the IX direction at the kth interface
displacements of the middle surface in the x, eand z coordinates
rotations of the middle surface
direction cosines of unit normal
Poisson's ratio
the open angle of the panel

INTRODUCTION

A shell is a curved structure and has many applications. The presence ofcurvature effectively
increases the structural stiffness. On the other hand, as everyone knows, fiber reinforced
composite materials provide certain advantages such as low weight to stiffness and weight
to strength ratios, good corrosion and heat resistance, and improved fatigue life. As a
result, shells made ofcomposites are extensively used in aircraft structures, pressure vessels,
sporting equipment, automobiles, and so on. Among the various constructions of shells,
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the closed cylindrical shells, panels and doubly curved shells are very important. Therefore,
bending analysis of these structures has received wide attention in recent years.

Based on the classical lamination theory incorporating the Kirchhoff-Love hypotheses,
also known as the Love first approximation theory, the static analysis of laminated shells
has been studied by Whitney and Halpin (1968), Whitney (1971), Reuter (1972), Chaudhuri
et al. (1986) and Simitses and Han (1991). These theories are adequate to predict the global
response of laminates with relatively small thickness. Because of the low shear modulus to
in-plane stiffness ratio, the important role of transverse shear deformation, which is not
contained in classical lamination theory, cannot be neglected. Consequently, first-order or
high-order shear deformation theories of fiber reinforced laminated shells for more accurate
stresses and deformations were proposed by Dong and Tso (1972), Reddy (1984), Reddy
and Liu (1985), Chaudhuri and Abu-Arja (1989), Khdeir et al. (1989) and Dennis and
Palazotto (1991).

All the previously mentioned theories classified as the displacement based theories will
in general violate the condition of traction continuity at layer interface unless employing
the very specially designed displacement field by Hsu and Wang (1970) and Di Sciuva
(1987). To overcome this drawback, Reissner (1987) proposed another type of general shell
theory for transversely isotropic materials based on the Reissner mixed variational principle
(Reissner, 1984) with independently assumed transverse stresses. Recently, ling and Liao
(1989) proposed a mixed functional with displacements and transverse shear stresses as
independent variables and established the corresponding partial hybrid stress element for
the analysis of thick laminated plates. Some comparisons between these two functionals
for plates are made by ling and Tzeng (1 993a). More recently, ling and Tzeng (1993b)
derived a mixed shear deformation theory for thick laminated shells of general shape based
on the functional proposed by ling and Liao (1989). In this theory, the zig-zag type of
displacement field is assumed in addition to the Mindlin displacement by Murakami (1986).
There are seven independent displacement variables in total, three displacements for the
middle surface, two slopes and two zig-zag type displacements through the thickness.
Piecewise parabolic transverse shear stresses satisfying interface continuity are assumed
independently and the initial curvature effect is also included. In the previous study, the
cross-ply shells are used and satisfactory results are obtained by ling and Tzeng (1993b).

The purpose of the present study is to further investigate the range of application of
this mixed shear deformation theory (ling and Tzeng, 1993b) for generally laminated
anisotropic shells. Two types of shell geometry, cylindrical panels and closed finite circular
cylinders are considered. The panels are subjected to a transverse sinusoidal loading, while
the closed cylinders are under a uniform internal pressure. Numerical results are compared
with exact three-dimensional elasticity solutions, obtained by ling and Tzeng (1993c,d),
and some discussions are made.

GOVERNING EQUATIONS

For the sake of brevity, the equations of motion derived for general shells (ling and
Tzeng, 1993b) are not restated here. For a particular type of shell the governing equations
can be easily obtained by substituting the first fundamental form and curvatures. For
cylindrical shells, they become

1
k) =-

- R (1)

where R is mean radius of the cylinder. The A, = A,(~j, ~2) are coefficients of the first
quadratic form of the middle surface, and k, = k,(~j, ¢2) are principal curvatures of the
middle surface along the lines ~2 = constant, ¢l = constant, respectively. The x, () and z
represent the axial, circumferential and thickness coordinates. Static equilibrium equations
for cylindrical shells subjected to transverse normal loading can thus be obtained as
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1 1
Nx,x+ Ii NxB,o = 0; NBx,x+ Ii (NB,B+NBz ) = 0

1 1 +~. h + - 0
N",x+IiNOz,B-IiNo+(Tz -Tz )+ 2R(Tz +Tz ) =

1 1
Mx,x+ IiMox,x-Nxz = 0; MxB,x+ IiMo,B-Noz = 0

I I
L"x + Ii Lox,x - K" = 0; L xo,x+ Ii LO,B - Koz = 0,
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(2)

T: , T; stand for the normal tractions on the top and bottom surfaces and h the total
thickness, The stress resultants can also be found in previous work (Jing and Tzeng 1993b).
There are seven equations in total regardless of the number of layers. It should be noted
that the initial curvature effect is included in the stress resultants, This results in the
nonsymmetric stress resultants, i.e. N,o =1= Nox, M xo =1= MO,n and L,o =1= Lox·

Using the same assumed transverse shear stresses (Jing and Tzeng 1993b), piecewise
parabolic and the functional proposed by Jing and Liao (1989), the transverse shear
compatibility equations of arbitrarily laminated anisotropic cylindrical shells can be
expressed in matrix form as follows:

In the above formula

Qx+A] T,+B]Qo+A2To = d]Y~z+d2S,

F,Qx+ F 2QO+G tT,+G2To = d3Y~z+d4Sx

B2Qx+Qo+A3Tx+A4To = d5Y~z+d6S0

F3Qx+F4QO+G2T,+G3To = d7')'~z+d8S0' (3)

where rx = 1,2 representing x and e. The Q~k) represents the parabolic part of shear force
in the rx direction of the kth layer. T~k) is the value of the transverse shear at the kth interface
along the rx direction. The matrices d/i = 1-8), Aj , F/j = 1-4), Gi(i = 1-3) and Bp (f3 = 1,
2) are expressed in eqn (A1) in the Appendix. The boundary conditions are given by

Geometric (essential) Force (natural)

U, = 0 Nxvx+Noxvo =0

Vo= 0 Nxovx+Novo = 0

Vz = 0 Nxzvx+Nozvo = 0

'Px = 0 Mxvx+ Moxvo = 0

'Po = 0 MXBVx+Movo = 0

S, = 0 Lxv, + Loxvo = 9

So = 0 Lxovx+Lovo = 0 (4)

where (v" vo) are direction cosines of unit normal to the boundary of the middle surface. If
the boundary is simply supported, it means Vz = M o = No = Lo = 0 along the x direction,
and V z = M x = N x = L, = 0 along the edirection.
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The constitutive equations of in-plane stress resultants, which can be derived directly
from the Hooke law of the material, strain-displacement relations, and the stress resultants,
for the laminated anisotropic cylindrical shells and panels are of the form

l~H::
NK N']nM K M p UK (5)

M p L p Up

where

N = [NxNoNxeNexlT M = [MxMeMxeMexlT

L = [LxLeLxeLex]T U c = [8~8£8~e8ZxlT

UK = [KxKeKxeKexlT Up = [f3x13ef3xef3exl T
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A I2 H I6 A I6

IT"
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66
.

K I6 Q26 K 66 Q66 Y I6 Z26 Y 66 Z66

The elements of the above matrices are defined as

for i,j = 1,2,6 in this case. The strain components are

(6c)
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1
/30 = RSo,o; /3xo = So,x;

1
KH = R\flu

(7)

In the above formula, U" UH, and Uz stand for the displacements of the middle surface in
the x, eand z directions, \fix and \flo are rotations of the middle surface about the eand x
directions, Sx and SH are the amplitudes of the zig-zag in-plane displacement variations
across the thickness of the shelL The transverse shear resultants can be obtained through
the assumed transverse shear stresses, The results are

r'l
Dfl Df2 Df3 Df4

rl
hz

N Hz Gfl Gf2 Gf3 Gf4 Sx
(8)

Kxz Drl Dr2 Dr3 Dr4 y2z

KHz Gr, Gr2 Gr3 Gr4 So

where y~z = Uz,x + \fixand y2z = O/R)( Uz,o - Uo)+ \flo, and Df"", ,Gr4 are given in eqn
(A2) in the Appendix, Substituting eqns (5) and (8) into eqn (2), the final equilibrium
equation is then in terms of displacement variables and ready to be solved with appropriate
methods, In this paper, series method is used to find the solution, For an infinitely long
shell in the x direction, the governing equations can be obtained by neglecting quantities
involving the derivatives of x, Similarly, the governing equations for an axisymmetric
problem is then obtained by neglecting quantities involving the derivatives of e,

NUMERICAL EXAMPLES

In order to verify the accuracy of the present mixed shear deformation theory for
generally anisotropic shells, two numerical examples are considered, One consists of cyl­
indrical shell panels of infinite length in the axial direction under transverse normal loading,
the other is a closed cylinder of finite length subjected to a uniform internal pressure in
which the problem is independent of e coordinates, The corresponding geometries and
coordinate systems are given in Figs I (a) and (b) separately, The solutions obtained from
the present theory for these examples are compared with exact solutions obtained by ling
and Tzeng (l993c, d),

Example 1: cylindrical panels
In the first example, a cylindrical panel with mean radius R and thickness h is subjected

to a sinusoidal loading [T: = qo sin (nel¢)] with maximum value qo at the center. The
boundary is simply supported. The open angle of the panel is denoted by ¢ and the angle
eused in the following discussion is defined as 0 ~ e~ ¢. Two types of stacking sequences,
a two-layered antisymmetric [45°1 -45°] laminate and a three-layered symmetric
[45 0 1- 45c /46°] laminate are considered. The layers are of equal thickness. The negative
sign of the fiber angle denotes counterclockwise direction with respect to the positive
direction of the generator (x axis). For ease of comparison, the following material proper­
ties, geometry and normalized parameters are considered:



1464 Hung-Sying Jing and Kuan-Goang Tzeng

z

Fig. l(a). Cylindrical panel coordinates and geometry; (b) shell coordinates, geometry and lami­
nation.

VLT = 0.25; Vrr = 0.25;
R

S=-'
h'

z
z=-

h
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Fig. 2. Comparisons of central transverse deflection u,(cP/2, z) of[45°/ - 45°] laminate from elasticity,
present, FSDT and CST with various S values.

(9)

where L denotes the direction parallel to the fibers, T the transverse direction, and v the
Poisson ratio. Moreover, u x , Uo and Uz denote the displacements along axial, circumferential
and thickness directions.

Figures 2 and 3 show the influence of radius to thickness ratio (S) on the central
transverse deflection Uz for both stacking sequences. Three approaches, namely the classical
shell theory (CST), first-order shear deformation theory (FSDT) (Reddy, 1984) and the
present one, are compared with the exact theory by ling and Tzeng (l993c). In these figures,
the ratio S ranges from 4 to 20. For both stacking sequences, the present results are all very
close to that from the elasticity solution. As S increases, the results of these three theories
are asymptotically close to the exact theory. Moreover, it is seen that the present results for
symmetric configuration are more accurate than antisymmetric layup as S increases. These
figures also show the influence of the initial curvature (IC) effect on the transverse deflection
with various S for both stacking sequences. The deviations caused by neglecting the IC are
very clear. The errors of Uz without considering IC for S = 4, 20 are 10.9% and 4.2% while
they are 0.4% and 1.8% for the results with Ie. Therefore, the incorporation of IC in the
two-dimensional shell theory for accurate results is a must.

Figures 4 and 5 display the comparisons of the circumferential displacements at the
edge point e= 0 for both stacking sequences from CST, the present approach and the exact
theory. In these figures, a shell panel with S = 4 is used. These figures show that the present
results are very close to the elasticity solution. For [45 0

/ - 45°] layup, the zig-zag amplitudes
Sx and So are almost zero which results in the through thickness distributions of cir­
cumferential displacement Uo very close to linear. On the other hand, the zig-zag shape is
more obvious for [45 0

/ -450 /45°] lamination.
Through thickness stresses 0'0 along the circumferential direction at the point e= 4>/2,

from three different theories with S = 4, are plotted in Figs 6 and 7 for both stacking
sequences. Again, it can be found that the present results are in good agreement with the
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Fig. 3. Comparisons of central transverse deflection u'(I/Jj2,z) of [45°(-45°(45 C
] laminate from

elasticity, present, FSDT and CST with various S values.
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Fig. 4. Comparisons of the through thickness circumferential displacement uo(O,z) of [45°(-45°]
laminate from elasticity, present and CST with S = 4.

elasticity solution. Obviously, the results from CST for [45 0
/ - 45°] layup are more accurate

than [45°/-45°/45°] lamination. The reason is thought to be as follows. Although the
deviations of displacements are significantly large for both stacking sequences, the deriva­
tives of them are fairly close to the exact theory for [450

/ - 45°] layup.
Figures 8 and 9 exhibit the through thickness distributions of transverse shear stress

'fez at the point () = 0 for S = 4. Since the traction free conditions on the top and bottom



Anisotropic cylindrical shells 1467

Exact

,,
,

---------. Present

18.

Ug

,,

----- CST

[45°/ -45°/45° J

6.0,.0
\
\
\
\
\
\

\
\
\
\
\
\,

0.1

0.5

0.3

-0.1

-0.5

-0.3

Fig. 5. Comparisons of the through thickness circumferential displacement U8(O, z) of [45° / _45"/45"]
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Fig. 6. Comparisons of the through thickness circumferential stress (J/I(1>/2, z) of [450
/ - 45°] laminate

elasticity, present and CST with S = 4.

surfaces and the continuity conditions along interfaces are satisfied in the assumed trans­
verse shear fields, unreasonable discontinuity phenomena do not show up in the present
approach. As compared with the elasticity solution, the present results are fairly accurate.
Further, the present approach with Ie, which makes the distribution nonsymmetric, on
assumed transverse shear stresses has the same tendency as the exact theory. However,
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Fig. 7. Comparisons of the through thickness circumferential stress °0 (</>/2, z) of [45 0
/ -450 /45°1

laminate from elasticity, present and CST with S = 4.

0.5

0.3

-- Exact

------ Present

S=4

0.1

-0.1

-0.3

0.1 0.2

-0.5

Fig. 8. Comparisons of the through thickness transverse shear stress foz(O, z) 0[[45°/ _45°] laminate
from elasticity and present with S = 4.

discrepancies can still be found along the ply interfaces. In composite laminated shells, the
transverse normal stress is very important because it is related to the delamination. The
transverse normal stresses of this example are plotted in Figs 10 and II. Since the transverse
and in-plane displacements assumed in this theory are of zero and first order, respectively,
the corresponding stress will not be reasonable if it is obtained directly from the stress-
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Fig. 9. Comparisons of the through thickness circumferential shear stress f.,(O, z) of[45°(- 45°(45°]
laminate from elasticity and present with S = 4.
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Fig. 10. Comparisons of the through thickness normal stress iiz(rfJ(2, z) of [45°(-45°] laminate from
elasticity and present with S = 4.

strain relation. Consequently, the exact equilibrium equation in the transverse direction is
integrated to obtain the transverse normal stress by using the transverse shear obtained in
Figs 8 and 9. From the comparisons, it can be seen that the results from this theory are
fairly acceptable. In symmetric layup, the comparison is even better.
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Fig. 11. Comparisons of the through thickness transverse normal stress a,(4J/2, z) of [45' / -45' /45"]
laminate from elasticity and present with S = 4.

Example 2 : finite cylinders
In the second example, a three-layered symmetric closed finite cylinder with stacking

sequence [-45°/45°/ -45"] is considered. The layers are of equal thickness. A uniform
internal pressure with intensity Po is applied on the inner surface. The boundary is again
simply supported. Material properties and non-dimensionalized displacements and stresses
are considered:

(10)

VLT = 0.25; VTT = 0.49;
R

S=-'
h'

L
-=20
R

(II)

(12)

In the above formulae, R, h, L denote the mean radius, thickness and length of the cylinder.
Figures 12-16 display results of the second example. In these figures a closed cylinder with
S = 5 is investigated. Figure 12 shows the comparisons of transverse deflection between
CST, the present approach and the exact theory (approximate elasticity solution) obtained
by ling and Tzeng (l993d). It is seen that the deflections are all very uniform in the central
region, but some variations can be found in the edge region. Since the applied load is on
the bottom surface, while CST on the middle surface, the results from CST have certain
deviations, up to 13% in the central region. From this comparison, the present approach
gives results almost identical to that of exact theory in the central region. There is only a
minor deviation at the edge. The main reason for this good comparison both in the central
and edge regions is because the present approach includes the effect of initial curvature and
shear deformation, which is considered by using a mixed formulation.

Axial variations of in-plane stresses at the top surface of the outer layer are shown in
Figs 13-15. In these figures, the results from CST, approximate elasticity, and the present
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Fig. 12. Comparisons of axial variation of transverse deflection of the middle surface of
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Fig. 13. Comparisons of axial variation ofiongitudinal stress of the top surface of [45°/ - 45° /45°1
laminate from elasticity, present and CST with S = 5.

approach are given. The solution of the present theory without the initial curvature effect
is also included to reveal the importance of this effect. For all the in-plane stresses, the axial
stress (jx, circumferential stress (j°and shear stress f xo, the present approach gives reasonably
good agreement both in the central and edge regions when compared with the elasticity
solution. The results from CST show great deviation throughout the length of the shell. If
the effect of shear deformation is included, the results in the edge region are closer to that
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Fig. 14. Comparisons of axial variation of circumferential stress of the top surface of [4SO/ - 45°/45°]
laminate from elasticity, present and CST with S = 5.
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Fig. 15. Comparisons of axial variation of in-plane shear stress of the top surface of [45C
/ - 45°/45°]

laminate from elasticity, present and CST with S = 5.

from elasticity while almost no improvement in the central region can be found. After the
initial curvature effect is also incorporated in the present approach, good comparison with
the elasticity solution is found. Thus, it is clear that the reason for CST to have great
deviation is the negligence of both effects of shear deformation and initial curvature.
Further, the shear deformation is important only in the edge region. Incorporation of the
shear effect can only upgrade the results at the edge.

Figure 16 gives the transverse shear stress r,,, along the length of the cylinder from
both the elasticity theory and the present approach. It is found that the shear is zero in the
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Fig. 16. Comparisons of axial variation of transverse shear stress of the middle surface of
[45°/-45°j45°] laminate from elasticity and present with S = 5.

central region and has violent changes at the edge. Although the variation in the edge
region is quite drastic, the present approach can still satisfactorily predict the stress. The
reasonable accuracy of the present theory is thus demonstrated.

CONCLUSIONS

Bending analysis using the mixed shear deformation theory proposed by the authors
is extended to arbitrarily laminated anisotropic shell panels and closed cylinders in this
study. The effect of shear deformation is considered through the variational approach.
Piecewise parabolic distribution is assumed for transverse shear. The initial curvature effect
is included in the assumed transverse shear stresses as well as strain-displacement relations
and stress resultants. Two examples are studied. Both the cylindrical panels and closed
finite cylinder are investigated. From the results shown above, it is quite clear that the
present mixed shear deformation theory can satisfactorily predict the behavior of thick
shell panels and finite cylinders with arbitrary lamination although only two stacking
sequences are studied. Reasonably good results can be found for the displacements, in­
plane stresses, transverse shear, and also transverse normal stresses. The main reason is due
to the incorporation of effects of shear deformation with mixed formulation and the initial
curvature. None of these can be neglected to have a reasonable two-dimensional shell
theory.
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APPENDIX

The matrices diU = 1-8), ...• BfJ appearing in eqns (3) are given as follows:

o

o

(S,,h./S,,",)'" I



Anisotropic cylindrical shells

A = [(b fa )Ik) (b i:,)lkJ
4!'1~N_l 21 2 4, -'-

o

o

F, ,_'" ~ [ (S":' )'" (S"h, )'" " ]

o

F',_ '" ~ [ (S":,),,, (S"b, )'" " ]

(S"d:)"'" •

o

(S"d,)" , " ]

o

1475

o

(AI)

where 544, S45 and S55 stand for compliance of transverse shear. In the above formulae

and the elements of these matrices are

Rlk)
b1kJ __

I - 2R

R lk ) hblk ) k

4 - 2R - 20R

elk) = '!l (_ ~ Rl
k»).

] R 12 + 2h
k

'
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R (k)/

d\kl = __1"
~ 6R

R (k l / /0
Ilk) 1_, _ -2L
(] - 3R 12R

where R1kJ is the mean radius of the kth layer and

:f b' 2'1+1 cL

tio= -L, ')'("-')(2 -I); ti'=_L
'I_ L_,..... n. 11-1.2

fj-2n-t I

in which h = Rlk}/hk • The constants Dr" ... ,G!4 appearing in eqn (8) are expressed as follows:

(Dr" Dr2, Dr" Dr4) = tY (h9 , hill> h", h 12 ) +tI (h" h" h3, h4)

(Dj'" Dr" Dj'" D!4) = tj (h9 , h,o, h", h 12 ) +tJ(h" h" h 3 , h4)

(Gr" Gr2, Gr3, Gr4) = mf(h lJ , h'4' h 15 , h'6) +mI(h" h6, h 7 , h,)

(G!" Gj'" G!" Gj'4) = mj (hlJ, h'4' hiS' h'6) +mJehs, h6, h7, h,).

The elements of the above equation are given as

tY,<¥ = [e\'l .. e\'1]; tt., = [(A,e,)") (A,e,),N,]

mr", = [ei'! ... e~"']; mT", = [(A 2e,)"! ().2e2)""J]

(h"h"h"h4 ) = -[a,' a,(h5,h6,h7,h,)+a,-'(b"b2,b"b4)]

(h s,h6,h7 ,h g ) = [a4-a,a,' a,]-'[a,a,'(b"b"bJ,b4)-(bs,b6,b"b8)]

(h9 , h,o, h", h 12 ) = g, (h" h" h], h4 ) +g,(hs , h6 , h 7 , hg ) + (g" g4, g5, g6)

(h", h'4' h 15 , h(6) = I, (h" h" h" h4) +f2(hs, h6, h7, h,) + (f3, f4, f5, f6)

in which

(a"a 2) = F,(g"g,)+F2(f"f,)+(G"G 2 )

(a 3,a4 ) = F,(g"g,)+F4(f"f2)+(G"G])

(b" b" b" b4 ) = F, (g3, g4, gs, g6) + F2(f" f4 , f5, f6) - (d], d., 0, 0)

(bs , b6 , b 7 , b8 ) = F] (g3, g4, gs, g6) + F4(f],f4' f s , f6 ) - (d7, dR' 0, 0).

The matrices f" ... , go in the above formulae are

(f" f" f" f4, Is, f6 ) = [I - B2B,]-' [B,(A" A" -d" -d2 , 0, 0) + (- A" -A4, 0, 0, ds, d6)]

(g" g2, g" g4, g" go) = (- A" - A" d" d" 0, 0) - B, (f" f" f" f4 , fs, f6)

where I is an N x N identity matrix and the superscript - 1 stands for the inverse of a matrix.

(A2)


